Exercise 27

Prove the statement using the precise definition of a limit.

$$
\lim _{x \rightarrow 2}\left(x^{2}-3 x\right)=-2
$$

Solution

Proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-2|<\delta \quad \text { then } \quad\left|\left(x^{2}-3 x\right)-(-2)\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-2|$.

$$
\begin{gathered}
\left|\left(x^{2}-3 x\right)-(-2)\right|<\varepsilon \\
\left|x^{2}-3 x+2\right|<\varepsilon \\
|(x-1)(x-2)|<\varepsilon \\
|x-1||x-2|<\varepsilon
\end{gathered}
$$

On an interval centered at $x=2$, a positive constant C can be chosen so that $|x-1|<C$.

$$
\begin{aligned}
& C|x-2|<\varepsilon \\
& |x-2|<\frac{\varepsilon}{C}
\end{aligned}
$$

To determine C, suppose that x is within a distance a from 2 .

$$
\begin{gathered}
|x-2|<a \\
-a<x-2<a \\
-a+1<x-1<a+1 \\
|x-1|<a+1
\end{gathered}
$$

The constant C is then $a+1$. Choose δ to be whichever is smaller between a and $\varepsilon /(a+1)$: $\delta=\min \{a, \varepsilon /(a+1)\}$. Now, assuming that $|x-2|<\delta$,

$$
\begin{aligned}
\left|\left(x^{2}-3 x\right)-(-2)\right| & =\left|x^{2}-3 x+2\right| \\
& =|(x-1)(x-2)| \\
& =|x-1||x-2| \\
& <C \delta=(a+1)\left(\frac{\varepsilon}{a+1}\right)=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 2}\left(x^{2}-3 x\right)=-2
$$

